Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Eng ; 18(1): 27, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622739

RESUMEN

The demands for novel and efficient therapies have gradually increased with the rising concerns of osteoporosis (OP). The most popular method in promoting bone regeneration during osteoporotic conditions consists of loading bioactive materials with different drugs to treat osteoporotic bones by either promoting the process of osteogenesis, or by inhibiting the activity of osteoclasts. By analyzing single cell sequencing results, we found that divalent metal transporter 1 (DMT1) played a role in OP. Based on our previous results, we found that melatonin (MT) suppressed expression of DMT1 induced by high glucose during OP, so we determined the efficacy of MT for the treatment of OP. However, the clinical effects of MT on OP were unsatisfactory. To enhance its biological efficacy, we combined MT with porous gelatin chitosan (chitosan) and the conductive material, PLA-b-AP-b-PLA (PAP), then determined how MT incorporation in chitosan@PAP nanoparticles affected the ability to promote MC3T3-E1 osteogenesis and mineralization, both in vitro and in vivo. The results confirmed the effect of MT on DMT1. We then prepared and characterized composites prepared as nanofibers, and determined the efficacy of MT combined with chitosan-PAP modified hydrogels as a slow-release system in a femur model of osteoporosis mice, with associated properties suitable for bone tissue engineering. The results indicated that MT-loaded chitosan@PAP nanospheres showed favorable osteogenic functions, both in vivo and in vitro, providing a practical solution for bone regeneration for OP patients.

2.
BMC Musculoskelet Disord ; 25(1): 321, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654287

RESUMEN

BACKGROUND: Increasing studies have shown degeneration of nucleus pulposus cells (NPCs) as an critical part of the progression of intervertebral disc degeneration (IVDD). However, there are relatively few studies on single-cell transcriptome contrasts in human degenerated NPCs. Moreover, differences in Wnt/Ca2+ signaling in human degenerated nucleus pulposus cells have not been elucidated. The aim of this study is to investigate the differential expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans and try to investigate its mechanism. METHODS: We performed bioinformatics analysis using our previously published findings to construct single cell expression profiles of normal and degenerated nucleus pulposus. Then, in-depth differential analysis was used to characterize the expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans. RESULTS: The obtained cell data were clustered into five different chondrocytes clusters, which chondrocyte 4 and chondrocyte 5 mainly accounted for a high proportion in degenerated nucleus pulposus tissues, but rarely in normal nucleus pulposus tissues. Genes associated within the Wnt/Ca2+ signaling pathway, such as Wnt5B, FZD1, PLC (PLCB1), CaN (PPP3CA) and NAFATC1 are mainly present in chondrocyte 3, chondrocyte 4 and chondrocyte 5 from degenerated nucleus pulposus tissues. In addition, as a receptor that activates Wnt signaling pathway, LRP5 is mainly highly expressed in chondrocyte 5 of degenerated nucleus pulposus cells. Six genes, ANGPTL4, PTGES, IGFBP3, GDF15, TRIB3 and TNFRSF10B, which are associated with apoptosis and inflammatory responses, and are widespread in chondrocyte 4 and chondrocyte 5, may be closely related to degenerative of nucleus pulposus cells. CONCLUSIONS: Single-cell RNA sequencing revealed differential expression of Wnt/Ca2+ signaling in human normal and degenerated nucleus pulposus cells, and this differential expression may be closely related to the abundance of chondrocyte 4 and chondrocyte 5 in degenerated nucleus pulposus cells. In degenerated nucleus pulposus cells, LRP5 activate Wnt5B, which promotes nucleus pulposus cell apoptosis and inflammatory response by regulating the Wnt/Ca2+ signaling pathway, thereby promoting disc degeneration. ANGPTL4, IGFBP3, PTGES in chondrocyte 4 and TRIB3, GDF15, TNFRSF10B in chondrocyte 5 may play an important role in this process.


Asunto(s)
Apoptosis , Degeneración del Disco Intervertebral , Núcleo Pulposo , Análisis de la Célula Individual , Vía de Señalización Wnt , Humanos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/patología , Vía de Señalización Wnt/genética , RNA-Seq , Masculino , Persona de Mediana Edad , Femenino , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Adulto , Señalización del Calcio/genética , Condrocitos/metabolismo , Condrocitos/patología , Transcriptoma , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Análisis de Expresión Génica de una Sola Célula
3.
J Biol Eng ; 18(1): 11, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254196

RESUMEN

Disc degeneration often leads to a highly prevalent symptom known as low back pain. Healthy nucleus pulposus tissue exhibited a hypoxic environment devoid of blood vessels, while degenerated nucleus pulposus experienced hypoxic deterioration and the formation of new blood vessels. In this study, the expression of important genes like HIF-2α was found to vary between normal and degenerated nucleus pulposus cells when compared to the hypoxic surroundings. The aim of this study was to examine how HIF-2α is controlled in nucleus pulposus cells under hypoxic conditions and its role in angiogenic mechanisms. To assess the impact of gradual inhibition of HIF-2α on disc degeneration, we utilized PHBV-based synthetic materials loaded with inhibitors of HIF-2α. Specifically, we employed LPS and PT2399 loaded PHBV-PEG20k (PP20) to intervene with human nucleus pulposus cells. Additionally, we treated APD rat models with PT2399 loaded PP20 to evaluate its effects. The expression levels of target markers in nucleus pulposus cells were detected using PCR, WB, and immunofluorescence. Additionally, the effect of drugs on disc degeneration was identified through HE staining. The findings indicated that HIF-2α, CAIX, PPP1R15A, VEGFA, and EGLN3 could potentially serve as new indicators of disc degeneration. Additionally, HIF-2α might contribute to the progression of disc degeneration through involvement in angiogenesis and the regulation of hypoxia. Furthermore, the utilization of PT2399 loaded PHBV-PEG20k (PP20) could potentially offer a fresh alternative for treating disc degeneration.

4.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686018

RESUMEN

Rheumatoid arthritis (RA) is a multifaceted, chronic, progressive autoimmune disease. This study aims to explore the potential benefits of an enhanced drug delivery system utilizing optimized Gelatin Methacryloyl (GelMA) vectors in RA management. We evaluated the levels of miR-1124-3p and AGO1 in RA tissues and cell lines using qPCR, WB, and immunofluorescence. The effects of osthole on inflammatory response and joint morphology were determined by qPCR, H&E staining, and micro-CT. The data showed that miR-1224-3p was downregulated in RA tissues and HUM-iCell-s010RA cells, while the overexpression of miR-1224-3p in HUM-iCell-s010RA cells reduced the expression of IL-6 and IL-1ß. Luciferase assay demonstrated that AGO1 was a direct target gene of miR-1224-3p. Additionally, osthole treatment increased miR-1224-3p levels and decreased AGO1 expression. The release data showed that osthole loaded on GelMA was released at a slower rate than free osthole. Further studies in a mouse model of CIA confirmed that osthole-loaded GelMA was more effective in attenuating osteopenia in RA as well as alleviating autoimmune arthritis. These findings suggest that osthole can regulate the miR-1224-3p/AGO1 axis in RASFs cells and has the potential to be developed as a clinical anti-RA drug. GelMA could provide a new approach to long-term RA treatment.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , MicroARNs , Animales , Ratones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Hidrogeles , MicroARNs/genética
6.
Front Cell Dev Biol ; 11: 1276098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161331

RESUMEN

Background: Single-cell RNA sequencing (scRNA-seq) enables specific analysis of cell populations at single-cell resolution; however, there is still a lack of single-cell-level studies to characterize the dynamic and complex interactions between osteoporotic vertebral compression fractures (OVCFs) and Kümmell's disease (KD) in the osteoimmune microenvironment. In this study, we used scRNA-seq analysis to investigate the osteoimmune microenvironment and cellular composition in OVCFs and KD. Methods: ScRNA-seq was used to perform analysis of fractured vertebral bone tissues from one OVCF and one KD patients, and a total of 8,741 single cells were captured for single-cell transcriptomic analysis. The cellularity of human vertebral bone tissue was further analyzed using uniform manifold approximation and projection. Pseudo-time analysis and gene enrichment analysis revealed the biological function of cell fate and its counterparts. CellphoneDB was used to identify the interactions between bone cells and immune cells in the osteoimmune microenvironment of human vertebral bone tissue and their potential functions. Results: A cellular profile of the osteoimmune microenvironment of human vertebral bone tissue was established, including mesenchymal stem cells (MSCs), pericytes, myofibroblasts, fibroblasts, chondrocytes, endothelial cells (ECs), granulocytes, monocytes, T cells, B cells, plasma cells, mast cells, and early erythrocytes. MSCs play an immunoregulatory function and mediate osteogenic differentiation and cell proliferation. The differentiation trajectory of osteoclasts in human vertebral bone tissue was also revealed. In addition, ECs actively participate in inflammatory infiltration and coupling with bone cells. T and B cells actively participate in regulating bone homeostasis. Finally, by identifying the interaction of ligand-receptor pairs, we found that immune cells and osteoclasts have bidirectional regulatory characteristics, have the effects of regulating bone resorption by osteoclasts and promoting bone formation, and are essential for bone homeostasis. It is also highlighted that CD8-TEM cells and osteoclasts might crosstalk via CD160-TNFRSF14 ligand-receptor interaction. Conclusion: Our analysis reveals a differential landscape of molecular pathways, population composition, and cell-cell interactions during OVCF development into KD. OVCFs exhibit a higher osteogenic differentiation capacity, owing to abundant immune cells. Conversely, KD results in greater bone resorption than bone formation due to depletion of MSCs and a relatively suppressed immune system, and this immune imbalance eventually leads to vertebral avascular necrosis. The site of action between immune cells and osteoclasts is expected to be a new therapeutic target, and these results may accelerate mechanistic and functional studies of osteoimmune cell types and specific gene action in vertebral avascular necrosis and pathological bone loss diseases, paving the way for drug discovery.

8.
Front Cell Dev Biol ; 10: 910626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874809

RESUMEN

Background: The nucleus pulposus is a constituent structure of the human intervertebral disc, and its degeneration can cause intervertebral disc degeneration (IDD). However, the cellular and molecular mechanisms involved remain elusive. Methods: Through bioinformatics analysis, the single-cell transcriptome sequencing expression profiles of human normal nucleus pulposus (NNP) cells and human degenerative nucleus pulposus (DNP) cells were compared to clarify the transcriptome differential expression profiles of human NNP and DNP. The single-cell sequencing results of the two samples were analyzed using bioinformatics methods to compare the differences in histiocytosis between human NNP and DNP, map the histiocytes of NNP and DNP, perform cell differentiation trajectories for the cell populations of interest and predict cell function, and explore their heterogeneity by pathway analysis and Gene Ontology analysis. Results: Nine cell types were identified, which were chondrocyte 1, chondrocyte 2, chondrocyte 3, chondrocyte 4, chondrocyte 5, endothelial, macrophage, neutrophil, and T cells. Analysis of the proportion of chondrocytes in different tissues revealed that chondrocyte 1 accounted for a higher proportion of NNP cells and highly expressed COL2A1 compared with DNP cells; chondrocyte 2, chondrocyte 3, chondrocyte 4, and chondrocyte 5 accounted for a higher proportion of DNP cells compared with NNP cells. Among them, chondrocyte 2 was an inhibitory calcified chondrocyte with high expression of MGP, chondrocytes 3 were fibrochondrocytes with high expression of COL1A1, chondrocytes 4 were chondrocytes that highly express pain inflammatory genes such as PTGES, and chondrocytes 5 were calcified chondrocytes with high expression of FN1 (chondrocytes 4 and chondrocytes 5 were found for the first time in a study of single-cell transcriptome sequencing of disc tissue). Cell trajectory analysis revealed that chondrocyte 1 was at the beginning of the trajectory and chondrocyte 3 was at the end of the trajectory, while chondrocyte 5 appeared first in the trajectory relative to chondrocyte 2 and chondrocyte 4. Conclusion: After functional identification of the specifically expressed genes in five chondrocytes, it was found that chondrocyte 1 was a chondrocyte with high expression of COL2A1, COL9A2, COL11A2, and CHRDL2 in a high proportion of NNP cells, and chondrocyte 3 was a fibrochondrocyte with high expression of COL1A1, COL6A3, COL1A2, COL3A1, AQP1, and COL15A1 in an increased proportion during nucleus pulposus cell degeneration. Through cell trajectory analysis, it was found that chondrocytes 5 specifically expressing FN1, SESN2, and GDF15 may be the key cells leading to degeneration of nucleus pulposus cells. Chondrocytes 2 expressing MGP, MT1G, and GPX3 may play a role in reversing calcification and degeneration, and chondrocytes 4 expressing PTGES, TREM1, and TIMP1 may play a role in disc degeneration pain and inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...